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Maxwell's equations (1862)

Without monopoles                With monopoles
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Dirac's argument

• Field angular momentum of electron-
monopole system is quantised: 

• Explains quantisation of electric charge!
– Fundamental magnetic charge (n=1):

Proc. Roy. Soc. A 133, 60 (1931)
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Schwinger's argument 

• Postulate particle carrying both electric and                  
magnetic charges → dyon 

• Quantisation of angular momentum with two dyons 
(q

e1
,q

m1
) and (q

e2
,q

m2
) yields:

• Fundamental magnetic charge is now 2g
D
!

– With |q
e
|=1/3e (down quark) as the fundamental 

electric charge, it even becomes 6g
D

Phys. Rev. 144, 1087 (1966)
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't Hooft and Polyakov's argument 

– Then monopoles arise as solutions of the field equations. 
Very general result!

– Monopole mass typically of the order of the unification scale

Assume the U(1) group of electromagnetism is a 
subgroup of a broken gauge symmetry 

Possible monopole mass rage (GeV)

GUT monopole
LHC 
reach

 Nucl. Phys. B79, 276 (1974)



7

Primordial Monopoles 

Big Catastrophe: standard cosmology predicts way too 
many monopoles!

– Inflation theory can solve this problem
– Huge uncertainty on relic monopole abundances
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Primordial “cosmic” monopole: 
– Moving freely through outer space
– Accelerated to relativistic speeds by 

galactic magnetic fields if m < 1015 GeV
– Abundances uncertain

Primordial “stellar” monopole: 
– Bound in matter before star formation
– Concentration uncertain, can be 

inhomogeneous today 

Secondary monopole: 
– Atmospheric production from high-energy 

cosmic ray

– Laboratory production in high-energy 
collisions at accelerators

– Cross section uncertain, presumably large



9

Experiments: where to search for 
monopoles?

• In flight (cosmic and atmospheric)
– Limitation: detector size and time of exposure

• In bulk matter (stellar, cosmic and atmospheric)
– Limitation: amount of material 

• At accelerators (laboratory production)
– Limitation: center-of-mass energy
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Property: production
EM coupling constant for Dirac charge = 34.25     

→ non-perturbative dynamics, no reliable cross 
sections and kinematics!

“Natural” benchmark models:

Remark: magnetic charge conservation prescribes 
that monopoles are stable and produced in pairs 

photon fusion Drell-Yan

M

M

M

M

_

_
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Acceleration along 
magnetic field:

• Straight line in xy 
plane

• Parabola in rz 
plane

Property: bending

arXiv:1112.2999

http://arxiv.org/abs/1112.2999
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• To atoms
– Binding energies of the order of a few eV

• To nuclei with non-zero magnetic moments
– Binding energies of the order of 200 keV

• At the surface of a ferromagnetic
– Image force of the order of 10 eV/Å
– Robust prediction (classical)

Property: binding in matter
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Property: ionisation energy loss
Electric                                         Magnetic

  Dirac monopole: |g
D
| = 68.5 → several thousand times 

greater dE/dx than a minimum-ionising |z|=1 particle

No Bragg peak!
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Detection: track-etch technique
Principle: passage of highly ionising particle causes 
permanent damage in plastic foils 
• Etching reveals the etch-pit cones

• Easily tested with ion beams
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Detection: extraction technique

Principle: strong (> 50 kG) magnetic field applied to 
extract and accelerate monopoles trapped in matter 

• Detector telescope measures dE/dx and range

• Limited mass and charge sensitivity
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Principle: moving magnetic charge induces electric field

Tiny permanent current measured after passage of 
sample through superconducting coil

– Directly proportional to magnetic charge
– No mass dependence

Detection: induction technique
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Collider searches 
current cross section limits for a Dirac monopole:

Induction

Track-etch
General-purpose

Extraction
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OPAL (LEP2)

• Special trigger requiring high thresholds in jet chamber

• Jet chamber also used offline for more refined selection

• 0.05 pb limit (45 to 102 GeV Dirac monopole)

arXiv:0707.0404 (2008)

http://arxiv.org/abs/0707.0404
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CDF (Tevatron)
• Special trigger requiring high pulse in TOF scintillator

• High-ionisation hits in tracker, straight line in xy plane

• 0.2 pb limit (200 to 700 GeV Dirac monopole)

arXiv:hep-ex/0509015 (2006)

http://arxiv.org/abs/hep-ex/0509015
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ATLAS and CMS (LHC)
• Need EM trigger

– See only monopoles which 
reach EM calorimeter (high 
energy or low charge)

• Pioneering (Summer 2010) ATLAS 
search, using standard tracking 

– Interpretation for electric 
charge 6e < |q

e
| < 17e

arXiv:1102.0459 (2011) • Dedicated monopole 
searches underway    
→  first results 
coming very soon!

• Dedicated triggers being 
designed 

http://arxiv.org/abs/arXiv:1102.0459
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MODAL (LEP1, track-etch)

Phys. Rev. D 46, R881 (1992)

• Plastic detectors surrounding I5 interaction point 

• 0.3 pb limit (up to 45 GeV HIPs)

http://prd.aps.org/abstract/PRD/v46/i3/pR881_1
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MoEDAL (LHC, track-etch)

http://moedal.web.cern.ch/

Test array already deployed around LHCb interaction point
Main run planned for 2014-2015

The seventh LHC experiment, dedicated to highly 
ionising particle detection

http://moedal.web.cern.ch/
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H1 beam pipe (HERA, induction)

arXiv:hep-ex/0501039 (2005)

• Monopoles and dyons with very high magnetic 
charges would stop in the Al beam pipe!

•  0.1 – 1 pb limit (up to 140 GeV monopole with g ≥ g
D
) 

http://arxiv.org/abs/hep-ex/0501039


24

CMS debris (LHC, induction)

SQUID tests performed at 
Laboratory for Natural 
Magnetism (ETH Zürich)

– Using CMS fingers, 
in full view of 
interaction point

Proposal: search for 
monopoles in ATLAS 
and CMS beam pipes 
(to be replaced next year!)
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Sensitivities of LHC experiments
arXiv:1112.2999 (2012)

http://arxiv.org/abs/1112.2999
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Cosmic ray searches

monopole mass (GeV)

MACRO underground array
F < 10-16 cm-2s-1sr-1 

Superconducting arrays F < 10-12 cm-2s-1sr-1 

SLIM high-altitude array 
F < 10-15 cm-2s-1sr-1 

RICE (ultra-relativistic)
F < 10-18 cm-2s-1sr-1   

AMANDA (relativistic) 
F < 10-16 cm-2s-1sr-1   
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Superconducting arrays (induction)

• Response depends only on magnetic charge     
→ can probe very low velocities / high masses

• Cryogenics typically limit area to 1 m2

• Exposure time of the order of 1 year

• Spurious offsets can happen → include multiple, 
independent detectors (e.g. closed box)

• F < 10-12 cm-2s-1sr-1 
PRL 64, 839 (1990)
PRD 44, 622 (1991)
PRD 44, 636 (1991)
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MACRO
• ~1400 m underground

• Area: 1000 m2, 10 m height

• Exposure: 5 years

• Various detection techniques:
– Scintillator (time-of-flight):       

0.0001 < β < 0.01 

– Scintillator (dE/dx):                 
0.001 < β < 0.1 

– Streamer tubes:                  
0.001 < β < 1 

– Track-etch:                          
0.001 < β < 1 

• F < 10-16 cm-2s-1sr-1 

arXiv:hep-ex/0207020 (2002)

http://arxiv.org/abs/hep-ex/0207020
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SLIM (track-etch)

• Altitude: 5230 m
(Chacaltaya observatory) 

• Area: 400 m2

• Exposure: 4 years

• F < 10-15 cm-2s-1sr-1  
arXiv:0801.4913 (2008)

http://arxiv.org/abs/0801.4913
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AMANDA-II (Cherenkov)

EPJC 69, 361 (2010)

• PM arrays buried in polar ice
– Can identify intense Cherenkov 

light expected from relativistic     
monopole (β > 0.8)

• Dark area: sensitive to up-going 
(much less backgrounds)
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RICE (radio Cherenkov)
• Antennas buried in polar ice

– Can identify strong radio wave signal from 
coherent Cherenkov radiation expected from  
ultra-relativistic monopole (β ≈ 1)                        
→ “intermediate mass”

• F < 10-18 cm-2s-1sr-1    (γ > 107 )

arXiv:0806.2129 (2008)

(simulated event)

http://arxiv.org/abs/0806.2129
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Bulk matter searches

monopole mass (GeV)

Moon rocks (cosmic)
ρ < 3·10-28 mon./nucleon

Rocks (cosmic)
ρ < 5·10-30 mon./nucleon

Meteorites (stellar)
ρ < 3·10-29 mon./nucleon

Polar volcanic rocks (stellar)
Potentially probe < 10-29 mon./nucleon

Seawater, air, sediments (cosmic)
ρ < 2·10-29 mon./nucleon



33

• Hundreds of kilograms 
of material analysed 
with large 
superconducting 
detector

• Depths of up to 25 km 
→ stop higher-energy 
monopoles

• ρ < 5·10-30  mon./nucleon

Deeply buried rocks and seawater 
(induction – cosmic)

→g
D
/2

PRA 33, 1183 (1986)
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Moon rocks (induction – cosmic)

PRD 4, 3260 (1971)
PRD 8, 698 (1973)

• Exposure: 4 billion years!
– No movement (few meters depth)

• No atmosphere and no magnetic field 
– Robust assessment of monopole fate after stopping
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Meteorites (induction – stellar)

PRL 75, 1443 (1995)

• Stellar monopoles heavier than the heaviest nuclei 
➔ Sank to the Earth's interior during Earth's formation
➔ Crust depleted today

• Motivates searching in meteorites, assuming:

– Impact did not dislodge monopole

– Meteoroid does not originate from planetary crust

• 112 kg of meteorites analysed

• ρ < 3·10-29  mon./nucleon

Possible future search: comets
→ Contain materials that the solar system 

formed from
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Polar volcanic rock project (induction – stellar)

• Stellar monopoles inside Earth would 
migrate along the Earth's magnetic field

➔ Position with all forces in equilibrium
➔ May be found in polar volcanoes!

Equilibrium  above 
Earth's surface 

3 kg of samples from 
Antarctica ready to be 
analysed
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Summary
• Magnetic monopoles are fundamental, well-

motivated objects
– Their non-existence would be a mystery

• Extensive searches at accelerators, in cosmic rays 
in in matter constrain the monopole masses, 
fluxes and abundances

– Might still be there, beyond the reach of past 
experiments

• Future searches need to be done in a larger scale 
than before, or in unusual places

– In returned comet samples
– In polar volcanic rocks

– Around LHC interaction points...
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Extra slides
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Monopoles are accelerated along magnetic fields, 
draining their energy

– If monopoles were very abundant, all magnetic 
dipoles would be neutralised

– Galactic magnetic field is not depleted           
→ constrains the cosmic monopole flux   
(Parker limit):  



41

ATLAS search multiply-charged particles
First HIP search at the LHC

– Very first data (summer 2010)

– Standard EM trigger and reco

– Interpretation 6e < |q
e
| < 17e

Major source of inefficiency comes 
from acceptance (punch through)  
→ Model-independent 
approach: 1-2 pb limits set in 
well-defined kinematic ranges 

arXiv:1102.0459 (2011)

Sequel: monopole search with 2011 data currently 
being approved by the Collaboration → with dedicated 
reconstruction and simulation

http://arxiv.org/abs/arXiv:1102.0459
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LHC reach in mass and charge
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Old (460 Myrs) mica crystals

• Very highly ionising particle causes lattice defects 
revealed after etching

– Needs assumption of a low-velocity (β ~10-3) 
monopole which captured a nucleus

• F < 10-18 cm-2s-1sr-1

PRL 56, 1226 (1986)
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Iron ore  
• Induction detector placed under a furnace at 

ore-processing plant
– Large amounts (>100 tons) of material
– Assume ferromagnetic binding, but must also 

assume no binding to nuclei

• ρ < 10-30 monopoles/nucleon PRD 36, 3359 (1987)
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Deep-sea sediments (extraction)

• Where would monopoles have accumulated 
preferentially?

• Monopoles thermalised in ocean water would drift to 
the bottom and become trapped near the surface 
of sediment

– Sedimentation rate 0.1 – 1 mm/century

• Unfortunately the extraction method used in this 
search could only probe masses up to 104 GeV

PRD 4, 1285 (1971)
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“Hot spot” plume in the Earth's mantle 
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Annihilation of monopoles inside Earth

Nature 288, 348 (1980)

• Heat generation from monopole-antimonopole 
annihilations during geomagnetic reversals

• ρ < 10-28 monopoles/nucleon
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