

Long-lived particle searches in ATLAS

Philippe Mermod (Stockholm University) Particle Physics Seminar, LMU February 9, 2009

- Why look for them ?
- How to look for them ?
- What's been done ?
- What's being done and what should be done ?

History

- Discovery of long-lived particles
 - muon, pion, kaon, neutrino... none of them at colliders !
- Collider discoveries
 - tau, heavy quarks, W and Z... none of them long-lived !
- New particles tend to be heavy and short-lived
 - Why should we look for new long-lived particles at high-energy colliders ?

Long-lived particles at colliders : motivations

- LHC physics
 - New energy regime : large discovery window
 - Standard model incomplete : new phenomena expected
 - Generic signatures : Missing ET, jets, leptons, long-lived charged particles
- Dark matter
 - Supposing long-lived
 neutral particles solves the puzzle !

Long-lived particles in SUSY and Extra-dimensions

- Extensions of SM
 - Cure hierarchy problem
 - Unification of forces
 - Dark matter candidate
- Frameworks with many models and parameters
 - Dark matter particle
 → missing energy
 - Quantify → measure properties of new charged particles (most are unstable)

- SUSY (R parity) :
 - Stable neutralino or gravitino
 - Long-lived gluino (split-SUSY)
 - Long-lived stop (MSSM)
 - Long-lived stau (GMSB)
 - Long-lived chargino (AMSB)
- UED (KK number) :
 - Stable KK photon or graviton
 - Long-lived KK gluon
 - Long-lived KK quark

Possible mechanisms to suppress heavy decays

C

- Conservation of a new quantum number
 - R-Parity (SUSY), KK number (UED)
 - Partial conservation : RPV SUSY
- Extra weak coupling to decay products

ĝ

- GMSB with gravitino LSP
- Split-SUSY
- Leptoquarks
- Hidden Valley
- Small mass difference to decay products
- Charge conservation
 - Exotic fractional charges
 - Magnetic Monopoles

Energy

SM

<u>mediator</u>

HV

Multi-particle

production

Heavy Coloured objects at the LHC

- Strong process, e.g. gluino pair production
 - Large cross section, depends only on gluino mass
 - Central and back-to-back
 - Expect more than 10⁵ for mass 300 GeV for one year's running

Long-lived particles at the LHC

ATLAS (muon spectrometer)

Long-lived particles in ATLAS SUSY RPV/LL and Exotics LLP subgroups

Stable Massive Particles

- Long-lived > 50 ns (size of ATLAS)
- Heavy > 100-200 GeV (LEP and Tevatron limits)
- Charged \rightarrow H-Lepton
- Coloured \rightarrow H-Hadron
 - Called **R-Hadron** in SUSY

Generic signature : slow-moving and high-pT

R-Hadrons: ATLAS CSC study SUSY chapter in CERN-OPEN-2008-020 (arXiv:0901.0512)

- Targets : metastable gluinos and stops
- Selection : jet veto + one of the following criteria
 - Hard (p_T>250 GeV) muon
 track lacking ID track
 - Two hard back-to-back ID tracks with large ionization
 - Two hard back-to-back likesign muon tracks
 - One hard muon track with ID track of opposite charge

	Sample	Mass [GeV]	Event Rate / fb ⁻¹
	ĝ	300	6400
		600	270
		1000	11
	\tilde{t}_1	300	70
		600	4
	BG	QCD di-jet	0.9
		Z→µµ	0.8

R-Hadrons CSC study : conclusions

- Possible early discovery
 - 300 GeV stops
 - 600 GeV gluinos
- Limitations of the study :
 - TOF not used
 - Instrumental effects not taken into account (next slide)
 - Reconstruction efficiency not well understood
 - Model dependences
 - Fraction of charged R-hadrons
 - Scattering in material

Instrumental backgrounds ATL-PHYS-INT-2008-040

- Use Z→µµ tag-and-probe
 - High- p_{T} tail fractions
 - Charge misidentification probability
 - Standalone track reconstruction efficiency
- In situ determination of both ID and muon system performances at high p_{τ}

12

Data-driven method for muon performance $(Z \rightarrow \mu \mu, 250 \text{ pb}^{-1})$

Early-data analysis

- For early data we want :
 - Data-driven control over instrumental effects
 - Generic search
- Muon-based analysis : (next slides)
 - Mu40 and stau triggers
 - Signature : two high-p_T muon tracks back-to-back
 - TOF from RPCs and MDTs
- Backgrounds :
 - QCD, ttbar, Z→µµ, cosmics, muon tails

• Idea :

- Use only basic selection cuts
- Independent analyses which can be cross-checked
- ID+Calo-based analysis : (just started)
 - J120 and J70_XE30 triggers
 - Signature : two high-p_T ID tracks back-to-back lacking high-energy associated jets
 - TOF from TileCal
 - Ionization energy loss in TRT

Muon-based analysis 1269 simulated gluino events M=300 GeV @ 10 TeV,

Two hard Muonboy tracks back-to-back

- $p_{T,1} > 200 \text{ GeV}$
- $p_{T,2} > 100 \text{ GeV}$
- $-\cos(\Delta\Phi) < -0.5$
- M_{µµ} > 300 GeV

- |η| < 2.5

(0.1fb-1)	no trigger	stau chain	
glu300	750	510	
Zmumu	0.03	0	
ttbar	0.2	0.1	
J5	0-1	0-1	

15

Muon-based analysis : jet activity and $\boldsymbol{\beta}$

(left = before, right = after event selection)

Why we need a calo-based analysis

- Unknown systematics
 - Slow-moving particle and hadronic interactions can degrade muon-like signal : difficult to estimate
 - Muon timing performance
- H-Hadrons which turn neutral
 - D type neutral in muon system

- Possible solution : complementary calorimeter-based search
 - Efficiency studies (cross-check muon and non-muon based) assuming a signal
 - Low-β accessible
 - Timing from TileCal
 - Energy loss in ID
 - Sensitive to all long-lived charged particle types
 - More difficult background rejection \rightarrow high-p_T isolated ID tracks ¹⁷

Calo-based analysis ingredient : TileCal cells (here with E > 1 GeV in cone around muon track)

Summary

- Many models of new physics predict new long-lived particles
- ATLAS searches cover a range of signatures
- Search strategies with early data have to address detector performance issues
 - Simplicity
 - Redundancy
 - Data-driven background estimations

Outlook

- Collision data are expected for this summer !
- Heavy long-lived coloured particles are expected to be produced copiously at the LHC
 - Early discovery possible !
- Muon-based search looks promising
 - High- p_{T} muons will be studied via the Z resonance
- Calorimeter-based search needs to be defined in more details
- Ultimately, full analysis using all available information
 - Topological signatures
 - Charge and type, model discrimination

Extra slides

Stable massive particles : classification and scattering

- Classify according to charge : electric, colour, magnetic, and combinations thereof
- Detector interactions determine the signature

Long-lived particle	charge	scattering
lepton, free quark	electric	ionization
colour triplet, octet	colour	hadronic scattering
Dirac monopole	magnetic	large ionization

Free quarks / fractional charge objects

Magnetic Monopoles at colliders

- The existence of a magnetic charge would account for charge quantization ! (Dirac)
- Pair-produced, stable and highly ionizing

- MoEDAL (LHC)
 - Same principle
 - At Point 8
 - Run in 2010

- MODAL (LEP)
 - Plastic track-etch detectors

- Leptons, gluons and U type objects
 - Published ATLAS studies
- D type objects
 - New models (arXiv:0710.3930) suggest stable hadron neutral in muon system !
- Objects with exotic charges

Q = 1/3, 1/2, 2/3, 4/3, 3/2, 2

- Reconstruction efficiency issues
- Are ATLAS searches sensitive to them ?
- Possible signature : $p/\Delta E$

Phys. Rept. 438, 1 (2007)

R-Hadron topological signatures

No flippers and $\mu^+\mu^-$

Drell-Yan as both a physics background and a way to extract instrumental backgrounds

High-threshold hits in TRT (left = before, right = after event selection) (top = leading muon track, bottom = second leading muon track)

Charge-flipping signature (left = before, right = after event selection) (top = leading muon, bottom = second leading muon)

Muon-based analysis : efficiencies

- Trigger efficiency : probability to pass the trigger given that it passes the analysis
 - Obtained from data using independent trigger, e.g., J120
 - Around 75% for stau trigger
- Efficiency of the analysis : probability for an underlying event to be reconstructed and selected
 - $-\epsilon_{ANA} = N(ANA_{NOTRIG})/N(GEN) = 8.5 \pm 1 \%$ (from MC)
 - Depends on three factors :
 - Two charged H-Hadrons in muon system : 56% for gluon type (33% for U type, 0% for D type)
 - Muonboy reconstruction efficiency for two charged H-Hadrons : first estimation 32% (speed & model-dependent)
 - Efficiency of the selection cuts for two reconstructed H-Hadrons : 48% (dominated by high-p_T cut) 30

E _{TRIG}	"from data"	MC prediction
L1_MU10	92 ± 6 %	97 ± 2 %
L1_MU20	88 ± 7 %	94 ± 6 %
L1_XE70	~25 %	24 ± 17 %
L1_J70_XE30	31 ± 17 %	24 ± 17 %
L2_mu10	~20 %	25 ± 17 %
L2_mu20	~16 %	24 ± 17 %
L2_stau	76 ± 11 %	68 ± 7 %
L2_stau L2_mu10	76 ± 11 %	77 ± 5 %

Uncertainties from MC statistics

Measuring β with calorimeters

- Calorimeter read-out every bunch crossing (25 ns)
 - Fit gives E, t
- Late arrival : in TileCal, with β = 0.7, we get 3.2 < Δ t < 9.3 ns
- TileCal cell time resolution in test beam (ATL-TILECAL -PUB-2007-002)
 - $-\sigma_{t}$ < 1 ns for E > 1 GeV
 - LAr expects similar resolution

