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Magnetic monopole – the basics
Divergent magnetic field lines are not seen in nature

– If you break a dipole magnet, you get two dipole magnets! 

Poles of electric field exist because electrically charged  
particles (e.g. electrons) exist

– Are there magnetic equivalents?

     electron                   magnetic monopole

     electric                                        magnetic



3

Maxwell's equations (1862)

Without monopoles                With monopoles
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Dirac's argument

Field angular momentum of electron-
monopole system is quantised: 

Explains quantisation of electric charge!
– Fundamental magnetic charge (n = 1):

– Monopoles should be very highly ionising!

Proc. Roy. Soc. A 133, 60 (1931)
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Schwinger's argument 

Postulate particle carrying both electric and                  
magnetic charges → dyon 

– Quantisation of angular momentum with two 
dyons (q

e1
,q

m1
) and (q

e2
,q

m2
) yields:

– Fundamental magnetic charge is now 2g
D
!

– With |q
e
|=1/3e (down quark) as the fundamental 

electric charge, it even becomes 6g
D

Phys. Rev. 144, 1087 (1966)



6

't Hooft and Polyakov's argument 

– Then monopoles arise as solutions of the field equations. 
Very general result!

– Monopole mass typically of the order of the unification scale

Assume the U(1) group of electromagnetism is a 
subgroup of a broken gauge symmetry 

Possible monopole mass rage (GeV)

GUT monopole
LHC 
reach

 Nucl. Phys. B79, 276 (1974)
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So, what we learned so far...
• There is no fundamental reason why monopoles would 

not exist
– But several arguments indicate that they should!

– Monopoles would be stable and produced in pairs, and 
carry a multiple of the Dirac charge → highly ionising 

• Monopoles with masses up to the TeV scale would be 
produced at high-energy colliders
– That would almost certainly be noticed in the 

measurements
– A convincing way exclude or discover them

• Grand Unification predicts much higher masses
– The monopole mass may be treated as a free 

parameter
– But how can we probe higher masses?
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Primordial 
Monopoles 

Big Catastrophe: 
standard cosmology 
predicts enormous 
monopole density!

Inflation theory solves 
this problem by 
diluting the 
monopoles

Huge uncertainty on 
relic monopole 
abundances



10

Secondary, produced in collisions:

• Cosmic rays impacting celestial bodies
– Probe cross section for given cosmic ray energy spectrum

• Particle colliders
– Probe cross section in limited mass range

Primordial, produced in early universe:

• Cosmic, moving freely through outer space
– Probe flux in given mass range for given energy spectrum

• Stellar, bound in matter before star formation
– Probe density in given medium 

Monopole classification
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• To atoms and molecules
– Binding energies of the order of a few eV

• To nuclei with non-zero magnetic moments
– Binding energies of the order of 200 keV

• At the surface of a ferromagnetic
– Image force of the order of 10 eV/Å
– Robust prediction (classical)

Monopole binding in matter
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Early searches for monopole in matter

Before 1980s, searches mostly focused on model of secondary 
cosmic ray production or thermalised cosmic monopoles

– In asteroids → meteorites

– In Earth's atmosphere → air, seawater, sediments

– In Moon's surface → moon rocks

• Up to billions years exposure time
• Low mass generally assumed 

– For masses >> GeV the game changes completely
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Early searches with extraction techniques 
(1960s – 1970s)

Principle: strong magnetic field used to extract 
monopole from sample and accelerate it through 
detector device 

• Extraction achieved by heating or pulsed magnetic field
– Even monopoles which are strongly bound would drag 

whole atoms with them if they reside on the material 
surface

• Detectors sensitive to the high ionisation energy loss 
expected for a monopole
– Scintillators

– Nuclear track detectors
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Extraction searches, materials probed:
• Meteorite fragment Nucl. Phys. 49, 87 (1963)

• Magnetite and meteorite surface Phys. Rev. 132, 387 (1963)

• Deep-sea manganese nodules Phys. Rev. 177, 2029 (1969)

• Deep-sea sediments Phys. Rev. D 4, 1285 (1971)

• Air and sea water Phys. Rev. D 13, 1823 (1976) 
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Extraction technique – discussion

• More steps =  more uncertainties 
1) Extraction efficiency

2) Acceleration and collimation efficiency – 
depends on charge and mass

3) Detection efficiency – relies on energy loss

• Setup optimised for given mass range

• Can only extract monopoles out of a very thin 
sample layer → low effective amount of 
material probed

   In the early 1970s, with the invention of 
superconducting magnetometers, a better 
method emerged
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Principle: moving magnetic charge induces electric field

Tiny permanent current measured after passage of 
sample through superconducting coil

– Directly proportional to magnetic charge
– No mass dependence, no assumption on energy loss

Detection: induction technique
(1970s – today) 
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Moon rocks (induction)

PRD 4, 3260 (1971)
PRD 8, 698 (1973)

• Used 47.8 kg of rocks returned from Apollo missions

• Exposure: 4 billions years!
– No movement (few meters depth)

• No atmosphere and no magnetic field 
– Robust assessment of monopole fate after stopping
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• 180 kg sea water

• 145 kg manganese 
nodules

• 498 kg deep schist 
depths of up to 25 km 
→ stop higher-energy 
monopoles

• 20 times more material 
than all previous 
searches together

• Robust technique

Large-scale search with materials from 
Earth's crust (induction)

→g
D
/2

PRA 33, 1183 (1986)
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Iron ore (induction)  
Superconducting coil placed under a furnace 

where iron ore Is heated to 1300 oC 
– Large amounts (>100 tons) of material

– Assume ferromagnetic binding

Must also assume no binding to nuclei!

PRD 36, 3359 (1987)
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Cosmic monopole searches: flux limits

monopole mass (GeV)

MACRO (underground)
F < 10-16 cm-2s-1sr-1 

Superconducting arrays F < 10-12 cm-2s-1sr-1 

SLIM (high altitude)
F < 10-15 cm-2s-1sr-1 

RICE (ultra-relativistic)
F < 10-18 cm-2s-1sr-1   

ANTARES / ICECUBE (relativistic) 
F < 2·10-17 cm-2s-1sr-1   Moon rocks

F < 5·10-19

cm-2s-1sr-1 

Terrestrial rocks

Seawater, air, sediments

Cherenkov

Ionisation
arrays

Induction – in matter

Induction – 
in-flight
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Stellar monopoles – where should they be?

Cloud

Planetary System

Planetary 
differentiation

Monopoles 
are (much) 
heavier
than the 
heaviest 
nuclei
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– Essentially absent from planetary crusts
– Searches in water, air, sediments, rocks, 

moon rocks... are not sensitive to stellar 
monopoles

Possibly:
– Inside the Sun
– In asteroids and comets → meteorites
– Inside the cores of planetary bodies

Stellar monopoles – where should they be?
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Indirect limit on stellar monopoles in Earth

Nature 288, 348 (1980)

Expect heat generation from monopole-antimonopole 
annihilations during geomagnetic reversals 

 → limit ρ < 10-28 monopoles/nucleon

Must assume mass 1016  GeV and: 
– Stable dipole magnetic field when no reversal

– Monopoles and anti-monopoles both present
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Indirect limit on stellar monopoles in Moon

Phys. Rev. D 27, 1525 (1983)

Magnetometer observations aboard Explorer 35 
orbiting the Moon

 → limit ρ < 10-32 monopoles/nucleon

Must assume: 
– Moon does not originate from Earth's crust

– Monopoles predominantly of one sign
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Search in meteorites (induction)

• Probed a total of 331 kg of rocks (meteorites, 
ferromanganese nodules, iron ores, blueschists, 
sediments, kimberlites, chromates)

• 112 kg of meteorites 
– ~100 kg are chondrites, believed to derive directly 

from primary solar nebula                                          
     → stellar monopoles!

– Masses up to 1017 GeV, beyond which monopoles 
might be dislodged by meteor impact

Phys. Rev. Lett. 75, 1443 (1995)
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Recent idea: 

Monopoles inside the Earth could migrate along 
magnetic axis all the way up to the surface

Search in polar volcanic rocks (induction)
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Dynamics of monopoles with equilibrium 
position inside the mantle

For Dirac charge (n = 1), 
magnetic force exceeds 
gravitational force above core-
mantle boundary for:                 
m < 4·1014 GeV

→ monopole follows mantle 
convection and mantle plumes

    Over geologic time, accumulation in the 
mantle beneath the geomagnetic poles 
for a wide range of masses and charges
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Polar volcanic rock search – samples

High latitude (>63o), mantle derived
• Hotspots 

• Mid-ocean ridges 

• Large igneous provinces 

• Isotopic content indicating deep 
origins 

Crushed to reduce magnetisation for 
precise magnetometer measurement
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Polar volcanic rock search – samples

Phys. Rev. Lett. 110, 121803 (2013)
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Magnetometer tests for trapped 
monopoles searches (1) 

Laboratory of Natural 
Magnetism, ETH Zurich

Magnetically
shielded room

DC-SQUID 
magnetometer
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Magnetometer tests for trapped 
monopoles searches (2)

Proof-of-principle using accelerator material near CMS

Calibration cross-check with long, thin solenoids
Eur. Phys. J. C 72, 2212 (2012)

X-ray image 
of defective 
plug-in 
module
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Polar volcanic rock search – results
Phys. Rev. Lett. 110, 121803 (2013)

• No monopoles found in 24 kg of polar volcanic rocks 

– In simple model, translates into limit of less than 0.02 
monopole per kg in the Solar System (90% c.l.) 

• Comparable and complementary to meteorite search
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 Direct stellar monopole searches: 
limits on monopole density 

in the Solar System

monopole mass (GeV)

Meteorites
< 2.3·10-5 mon./g

Polar volcanic rocks
< 1.6·10-5 mon./g



34

Monopoles at the LHC
Higher collision energies than ever before! 

– Can probe higher monopole masses, up 
to several TeV

• General-purpose detectors (ATLAS)

• Dedicated monopole detector (MoEDAL)

• Trapping experiments

Large Hadron Collider,
Geneva

SQUID magnetometer,
Zurich
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ATLAS monopole search

• Signature: high ionisation hits and narrow energy deposition

• Special simulation of monopole energy loss and trajectory in 
magnetic field

• Recently developed new event trigger for better sensitivity
– Monopole still needs to reach EM calorimeter

PRL 109, 261803 (2012),  arXiv:1207.6411

http://arxiv.org/abs/1207.6411
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The MoEDAL experiment

Dedicated to highly-ionising particle detection
Principle: passive detectors are exposed to 
collision products around LHCb collision point
Main detector: 
• Thin plastic foils

• High ionisation signature

• Track-etch technique

New subdetector: 
• Mag. monopole trapper (MMT)

• Aluminium absorber

• Induction technique
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Test arrays deployed in 2012 
Main run planned for 2015

http://moedal.web.cern.ch/

MoEDAL – status

http://moedal.web.cern.ch/
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Trapped monopoles at the LHC (induction) 

   Ongoing project:
    Search in dedicated aluminium trapping 

volume (MoEDAL MMT)

Future proposal: 
Search in ATLAS and CMS 

beryllium beam pipes 
• Being replaced this year

• Only vacuum between interaction point and beam pipe     
→ sensitivity to very high magnetic charges (n > 4)
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Monopoles at the LHC: Summary
Cross section needed for 10 events in acceptance 

after one year of LHC running 

A. De Roeck et al., EPJC 72, 1985 (2012), arXiv:1112.2999

http://arxiv.org/abs/1112.2999
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Summary

Magnetic monopoles are fundamental, well-motivated 
objects

• Past searches excluded the existence of 
secondary monopoles produced in cosmic-ray 
and accelerator collisions
– Still probing higher masses at the LHC

Beyond the TeV scale, primordial monopoles are 
allowed to take mass values up to the Planck scale 

• So far, no such monopoles were seen as a cosmic- 
ray component or a component of matter
– Very rare? → probe larger amounts of material
– Hiding? → probe more exotic stuff, e.g. asteroid 

cores, cometary dust...
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To catch the monopole, perhaps what we need is...
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To catch the monopole, perhaps what we need is...

A giant SQUID!
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Extra slides
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Property: production
EM coupling constant for Dirac charge = 34.25     

→ non-perturbative dynamics, no reliable cross 
sections and kinematics!

“Natural” benchmark models:

Remark: magnetic charge conservation prescribes 
that monopoles are stable and produced in pairs 

photon fusion Drell-Yan

M

M

M

M

_

_
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Acceleration along 
magnetic field:

• Straight line in xy 
plane

• Parabola in rz 
plane

Monopole bending

arXiv:1112.2999

http://arxiv.org/abs/1112.2999
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Monopole ionisation energy loss
Electric                                         Magnetic

  Dirac monopole: |g
D
| = 68.5 → several thousand times 

greater dE/dx than a minimum-ionising |z|=1 particle

No Bragg peak!
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Detection: track-etch technique
Principle: passage of highly ionising particle causes 
permanent damage in plastic foils 
• Etching reveals the etch-pit cones

• Easily tested with ion beams
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Monopole production kinematics
arXiv:1112.2999

http://arxiv.org/abs/1112.2999
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Range of monopoles in ATLAS and CMS

arXiv:1112.2999 (2012)

http://arxiv.org/abs/1112.2999
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ATLAS search multiply-charged particles
First HIP search at the LHC

– Very first data (summer 2010)

– Standard EM trigger and reco

– Interpretation 6e < |q
e
| < 17e

Major source of inefficiency comes 
from acceptance (punch through)  
→ Model-independent 
approach: 1-2 pb limits set in 
well-defined kinematic ranges 

arXiv:1102.0459 (2011)

Sequel: monopole search with 2011 data (next slides)

http://arxiv.org/abs/arXiv:1102.0459
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ATLAS monopole search – principle

• Data from 2011 (2 fb-1)

• Standard EM trigger

• Special tracking

–  Count TRT hits in window 
around EM cluster

– Robust against delta-electrons 
and anomalous bending

• Signature: high-threshold TRT hits 
associated to narrow EM cluster

• Interpretation for magnetic monopole with minimum charge   
(|g| = g

D 
) 

– Applying HIP correction in LAr

– Simulating monopole dE/dx and trajectory in Geant4

ATLAS-CONF-2012-062

https://cdsweb.cern.ch/record/1456263
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ATLAS monopole search – results
• Valid for Dirac (N=1) monopoles

• Blue curve is model-independent (factoring out acceptance) 

PRL 109, 261803 (2012),  arXiv:1207.6411

http://arxiv.org/abs/1207.6411
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ATLAS monopole search – next step

Recover monopoles stopping in first calorimeter layer
• New dedicated high-level trigger based on high-ionisation hits

• Large acceptance increase, allows to probe N = 2

• 7 fb-1 of 8 TeV data in 2012, analysis in progress

PRL 109, 261803 (2012),  arXiv:1207.6411

http://arxiv.org/abs/1207.6411
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Collider cross section limits for a Dirac monopole
Each limit is valid in a given mass range, 

generally assuming Drell-Yan like pair production mechanism

Induction

Track-etch
General-purpose

Extraction

ATLAS

M. Fairbairn et al., Phys. Rept. 438, 1 (2007), arXiv:hep-ph/0611040 

(added by 
speaker)

http://arxiv.org/abs/hep-ph/0611040
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MODAL (LEP1, track-etch)

Phys. Rev. D 46, R881 (1992)

• Plastic detectors surrounding I5 interaction point 

• 0.3 pb limit (up to 45 GeV HIPs)

http://prd.aps.org/abstract/PRD/v46/i3/pR881_1
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LHC reach in mass and charge
arXiv:1112.2999 (2012)

http://arxiv.org/abs/1112.2999


MMT design
• Material: Aluminium 

– Large nuclear dipole moment (spin 5/2) → likely to bind 
monopoles

– No activation

– Low magnetisation

– Cheap

• Module: 
– cylinder 2.5 x 2.5 x 7 cm

– Nicely fits magnetometer sample holder

• Two arrays
– one in front and one on the side                                        

 of VELO vacuum chamber

• MoEDAL track-etch module in front of each array



58

MMT acceptance estimates
(assuming Drell-Yan pair production mechanism)

2–10 % acceptance for monopoles in the range 1–4 g
D
 

– Higher charge → stops in VELO chamber
– Lower charge → punches through the MMT
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MMT tests with magnetometer

• Aluminium modules identical to those used in the 
MT setupḾ

• Monopoles with charge down to N = 0.5 can be 
identified without ambiguity 
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H1 beam pipe (HERA, induction)

arXiv:hep-ex/0501039 (2005)

• Monopoles and dyons with very high magnetic 
charges would stop in the Al beam pipe!

•  0.1 – 1 pb limit (up to 140 GeV monopole with g ≥ g
D
) 

http://arxiv.org/abs/hep-ex/0501039
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Superconducting arrays (induction)

• Response depends only on magnetic charge     
→ can probe very low velocities / high masses

• Cryogenics typically limit area to 1 m2

• Exposure time of the order of 1 year

• Spurious offsets can happen → include multiple, 
independent detectors (e.g. closed box)

• F < 10-12 cm-2s-1sr-1 
PRL 64, 839 (1990)
PRD 44, 622 (1991)
PRD 44, 636 (1991)
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MACRO
• ~1400 m underground

• Area: 1000 m2, 10 m height

• Exposure: 5 years

• Various detection techniques:
– Scintillator (time-of-flight):       

0.0001 < β < 0.01 

– Scintillator (dE/dx):                 
0.001 < β < 0.1 

– Streamer tubes:                  
0.001 < β < 1 

– Track-etch:                          
0.001 < β < 1 

• F < 10-16 cm-2s-1sr-1 

arXiv:hep-ex/0207020 (2002)

http://arxiv.org/abs/hep-ex/0207020
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AMANDA-II (Cherenkov)

EPJC 69, 361 (2010)

• PM arrays buried in polar ice
– Can identify intense Cherenkov 

light expected from relativistic     
monopole (β > 0.8)

• Dark area: sensitive to up-going 
(much less backgrounds)
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ANTARES search

• Relativistic (β > 0.75) → abundant Cherenkov light

• Only upgoing signals considered to reduce 
atmospheric muon backgrounds → need monopole 
to traverse the Earth (m  > 107 GeV) 

Astropart. Phys. 35, 634 (2012), arXiv:1110.2656

Monopole
 g=g

D

δ-electrons

muon

Density of photons emission

http://arxiv.org/abs/1110.2656
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SLIM (track-etch)

• Altitude: 5230 m
(Chacaltaya observatory) 

• Area: 400 m2

• Exposure: 4 years

• F < 10-15 cm-2s-1sr-1  
arXiv:0801.4913 (2008)

http://arxiv.org/abs/0801.4913
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RICE (radio Cherenkov)
• Antennas buried in polar ice

– Can identify strong radio wave signal from 
coherent Cherenkov radiation expected from  
ultra-relativistic monopole (β ≈ 1)                        
→ “intermediate mass”

• F < 10-18 cm-2s-1sr-1    (γ > 107 )

arXiv:0806.2129 (2008)

(simulated event)

http://arxiv.org/abs/0806.2129
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Old (460 Ma) mica crystals

• Very highly ionising particle causes lattice defects 
revealed after etching
– Needs assumption of a low-velocity (β ~10-3) 

monopole which captured a nucleus

• F < 10-18 cm-2s-1sr-1

PRL 56, 1226 (1986)
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